To determine if BRAF and/or MEK inhibitor-induced GPNMB expression renders melanomas sensitive to CDX-011, an antibody-drug conjugate targeting GPNMB. The Cancer Genome Atlas melanoma dataset was interrogated for a panel of MITF-regulated melanosomal differentiation antigens, including GPNMB. BRAF-mutant melanoma cell lines treated with BRAF or MEK inhibitors were assessed for GPNMB expression by RT-qPCR, immunoblot, and FACS analyses. Transient siRNA-mediated knockdown approaches were used to determine if MITF is requirement for treatment-induced GPNMB upregulation. GPNMB expression was analyzed in serial biopsies and serum samples from patients with melanoma taken before, during, and after disease progression on MAPK inhibitor treatment. Subcutaneous injections were performed to test the efficacy of MAPK inhibitors alone, CDX-011 alone, or their combination in suppressing melanoma growth. A MITF-dependent melanosomal differentiation signature is associated with poor prognosis in patients with this disease. MITF is increased following BRAF and MEK inhibitor treatment and induces the expression of melanosomal differentiation genes, including GPNMB. GPNMB is expressed at the cell surface in MAPK inhibitor-treated melanoma cells and is also elevated in on-treatment versus pretreatment biopsies from melanoma patients receiving MAPK pathway inhibitors. Combining BRAF and/or MEK inhibitors with CDX-011, an antibody-drug conjugate targeting GPNMB, is effective in causing melanoma regression in preclinical animal models and delays the recurrent melanoma growth observed with MEK or BRAF/MEK inhibitor treatment alone. The combination of MAPK pathway inhibitors with an antibody-drug conjugate targeting GPNMB is an effective therapeutic option for patients with melanoma. Clin Cancer Res; 22(24); 6088-98. ©2016 AACR.