Inherently chiral eight-membered rings embedded in tetraphenylene derivatives and hetero-analogues exhibit unique properties and allow diverse applications. A conceptually viable and straightforward approach to these frameworks is [4+4] cycloaddition, which still remains elusive. In this study, we describe the stereoselective cross-[4+4] cycloaddition of quinone methides (QMs), leading to the formation of oxa-analogues of tetraphenylene with exceptional chemo-, diastereo-, and enantioselectivity. The structures of these novel rigid eight-membered O-heterocycles were explored via single-crystal X-ray diffraction and their stereochemical stability was elaborated through both density functional theory (DFT) calculations and thermal racemization experiments. The developed methodology exhibited broad substrate scope and the resulting cross-[4+4] cycloadducts could be readily transformed into valuable chiral building blocks. Our findings expanded the inherently chiral library of medium-sized rings and also contributed to the advancement of asymmetric cross-[4+4] cycloadditions of quinone methides.
Read full abstract