BackgroundTwo strains of the endoparasitoid Cotesia typhae (Hymenoptera: Braconidae) present a differential parasitism success on the host, Sesamia nonagrioides (Lepidoptera: Noctuidae). One is virulent on both permissive and resistant host populations, and the other only on the permissive host. This interaction provides a very interesting frame for studying virulence factors. Here, we used a combination of comparative transcriptomic and proteomic analyses to unravel the molecular basis underlying virulence differences between the strains.ResultsFirst, we report that virulence genes are mostly expressed during the pupal stage 24 h before adult emergence of the parasitoid. Especially, 55 proviral genes are up-regulated at this stage, while their expression is only expected in the host. Parasitoid gene expression in the host increases from 24 to 96 h post-parasitism, revealing the expression of 54 proviral genes at early parasitism stage and the active participation of teratocytes to the parasitism success at the late stage. Secondly, comparison between strains reveals differences in venom composition, with 12 proteins showing differential abundance. Proviral expression in the host displays a strong temporal variability, along with differential patterns between strains. Notably, a subset of proviral genes including protein-tyrosine phosphatases is specifically over-expressed in the resistant host parasitized by the less virulent strain, 24 h after parasitism. This result particularly hints at host modulation of proviral expression. Combining proteomic and transcriptomic data at various stages, we identified 8 candidate genes to support the difference in reproductive success of the two strains, one proviral and 7 venom genes, one of them being also produced within the host by the teratocytes.ConclusionsThis study sheds light on the temporal expression of virulence factors of Cotesia typhae, both in the host and in the parasitoid. It also identifies potential molecular candidates driving differences in parasitism success between two strains. Together, those findings provide a path for further exploration of virulence mechanisms in parasitoid wasps, and offer insights into host-parasitoid coevolution.