BackgroundThe calcar of the proximal humerus is a fundamental structure for medial humeral column support. This study aimed to assess the outcome of osteosynthesis across cases of unstable proximal humerus fractures (PHFs) with medial calcar comminution, following treatment with a PHILOS locking plate and medial support screw (MSS).MethodsBetween January 2010 and December 2018, we retrospectively analyzed the outcomes of 121 cases of osteosynthesis for PHFs with medial column disruption. For the medial support, at least one oblique screw was inserted within 5 mm of the subchondral bone in the inferomedial quadrant of the humeral head. All patients were categorized into two groups: 26 patients in the single MSS group, and 95 in the multiple MSS group. Follow-up after at least an year involved clinical and radiographic outcome evaluations, and correspondingly measuring the Constant-Murley score, University of California, Los Angeles (UCLA) shoulder scale, pain visual analogue scale (VAS), major complications, neck-shaft angle (NSA), humeral head height (HHH), and the eventual time to bone union. Risk factors for the major complications were assessed by multivariate logistic regression analyses.ResultsThe cohort’s mean age was 64.4 ± 15.4 years, and the mean follow-up duration was 19.5 ± 7.6 months. At the final follow-up, between the single MSS and multiple MSS groups, no significant differences in the Constant-Murley score (p = 0.367), UCLA score (p = 0.558), VAS (p = 0.571), time to bone union (p = 0.621), NSA loss (p = 0.424), and HHH loss (p = 0.364) were observed. The incidence of complications (p = 0.446) based on the number of MSS were not significantly different. The initial insufficient reduction after surgery (of NSA < 125°) was found to be a significant risk factor for post-surgical complications.ConclusionsTo treat unstable PHFs, the use of at least one MSS along with a locking plate system is sufficient to achieve satisfactory outcomes. Successful operative treatment using a locking plate for PHF treatment is inherent in anatomical fracture reduction, coupled with medial column support.
Read full abstract