Conch shells, characterized by a highly mineralized hierarchical crossed-lamellar structure that represents the pinnacle of molluscan evolution, exhibit exceptional crack resistance to protect their soft bodies from predatorial attacks. In this paper, we present a three-dimensional fracture mechanics model to establish a correlation between fracture toughness and the crossed-lamellar structure, elucidating the hierarchical crack bridging mechanism of aragonite lamellae. We find that increased fracture toughness is achieved through the energy dissipation contributed by the interfacial debonding of both first-order and second-order lamellae. The conch shells demonstrate outstanding resistance to cracking in two principal directions, featuring a locally stacked structure of flat plates that effectively withstand complex loads. The vertically alternating stacking structure of macroscopic layers of equal thickness inspires a biomimetic design with more balanced mechanical properties, accompanied by enhanced crack resistance observed as the lamellae become thinner. The theoretical results are in good agreement with relevant experimental measurements. This work not only sheds light on the physical mechanisms responsible for the remarkable fracture toughness of crossed-lamellar structures but also provides guidelines for designing high-performance biomimetic structural materials.
Read full abstract