The boron diffusion process in the front field of N-type tunnel oxide passivated contact (TOPCon) solar cells is crucial for PN junction formation and the creation of a selective emitter. This study presents a theoretical model of boron diffusion in silicon using molecular dynamics. The research examines the mean square displacement and diffusion coefficient of boron atoms at varying temperatures, confirming their diffusion behavior. The simulations indicate predominant boron diffusion in the z-direction within the silicon matrix, with the diffusion depth being temperature dependent. The optimal temperature range for boron diffusion in silicon is identified as 950 °C to 1050 °C. Using boron-doped silicon paste and boron trichloride as dopants, thermal diffusion experiments were conducted to fabricate the front-field PN junction (p+ layer) and selective emitter (p++ layer) by one step. Subsequent processing and performance evaluation were performed on a production line. Experimental findings reveal a decrease in boron diffusion at higher temperatures, reduced sheet resistance, increased doping concentration, and deeper junction formation. The ideal boron concentration in the p+ layer is 8.68 × 1018 atom/cm3 with a depth of 0.53 μm, while the p++ layer is 2.35 × 1019 atom/cm3 and 0.82 μm. The efficiency of the optimized TOPCon + cell production line reaches up to 25.17 %, marking an improvement of 0.23 % over the standard cell production line. This research contributes to elucidating the mechanism of boron diffusion and offers insights for enhancing the efficiency of TOPCon solar cells.
Read full abstract