Wavelength-selective excited-state lifetime measurements and absorption, luminescence, and hole-burning spectra of a natural African emerald crystal are reported. The (2)E excited-state lifetime displays an extreme wavelength dependence, varying from 190 to 37 μs within 1.8 nm of the R(1)-line. Overall, the excited state is strongly quenched, in comparison to laboratory-created emerald (τ=1.3 ms), with an average quenching rate of ∼6 × 10(3) s(-1) at 2.5 K. This quenching is attributed to photoinduced electron transfer caused by a relatively high concentration of Fe(2+) ions. The forward electron-transfer rate, k(f), from the nearest possible Fe(2+) sites at around 5 Å is estimated to be ∼20 × 10(3) s(-1) at 2.5 K. The photoreductive quenching of the excited Cr(3+) ions by Fe(2+) is followed by rapid electron back-transfer in the ground state upon deactivation. The exchange interaction based quenching can be modeled by assuming a random quencher distribution within the possible Fe(2+) sites with the forward electron-transfer rate, k(f), given as a function of acceptor-donor separation R by exp[(R(f)-R)/a(f)]; R(f) and a(f) values of 13.5 and 2.7 Å are obtained at 2.5 K. The electron transfer/back-transfer reorganizes the local crystal lattice, occasionally leading to a minor variation of the short-range structure around the Cr(3+) ions. This provides a mechanism for spectral hole-burning for which a moderately high quantum efficiency of about ∼0.005% is observed. Spectral holes are subject to spontaneous hole-filling and spectral diffusion, and both effects can be quantified within the standard two-level systems for non-photochemical hole-burning. Importantly, the absorbance increases on both sides of broad spectral holes, and isosbestic points are observed, in accord with the expected distribution of the "photoproduct" in a non-photochemical hole-burning process.
Read full abstract