DNA damage is one of the primary mechanisms underlying cancer and other chronic degenerative diseases. Early evaluation of this damage in the affected cells and tissues is crucial for understanding pathogenesis and implementing effective prevention strategies. However, isolating target cells from affected organs, such as the lungs, can be challenging. Therefore, an alternative approach is to evaluate genotoxic damage in surrogate cells. Pulmonary alveolar macrophages are ideally suited for this purpose because they are in close contact with the target cells of the bronchial and alveolar epithelium, share the exact mechanisms and levels of exposure, and are easily recoverable in large numbers. This review comprehensively lists all studies using alveolar macrophages as surrogate cells to show genotoxic lung damage in humans or laboratory animals. These investigations provide fundamental information on the mechanisms of DNA damage in the lung and allow for better assessment and management of risk following exposure to inhalable genotoxic agents. Furthermore, they may be a valuable tool in cancer chemoprevention, helping the right choice of agents for clinical trials.