With growing concerns about sustainability, there has been significant research interest in fabricating triboelectric nanogenerators (TENGs) from materials capable of self-repair. Here, we presented a novel polyimine/graphite polypropylene (PI/GP) vitrimer composite as a tribo-positive material for harvesting biomechanical energy. The PI/GP exhibited mechanical robustness, self-healing properties after damage, and recyclability through physical or chemical methods. The GP provided a high dielectric constant, charge transport paths, and desirable surface roughness, resulting in an outstanding TENG performance at an optimized addition level of 30 wt% in the composite (PI/GP30). Under a force of 15 N and a frequency of 6 Hz, the PI/GP30 TENG generated a power density of 2571 mW/m². Moreover, a PI/GP30 TENG device with an area of 49 cm2 was able to generate a remarkable output voltage of nearly 1325 V, at a frequency of 6 Hz and under a vertical force of 15 N. Additionally, the PI/GP30 TENG device produced a peak-to-peak voltage of 1250 V, and an outstanding current of around 2 mA by hand tapping with a force of 35–40 N. The PI/GP30 TENG was utilized for real-life applications, including a triboelectric watchband for a self-powered watch, and wireless data transmission. Furthermore, the PI/GP30 TENG demonstrated excellent self-healing and recyclability, and these properties were examined in a mousepad power generator. This study highlights the excellent promise of PI/GP vitrimer composite for fabricating high-performance, mechanically robust, self-healable, and recyclable TENGs, enabling their applications in green biomechanical power generators and wearable and wireless communication devices.
Read full abstract