In newly developed 2101 lean duplex stainless steel, oxide inclusions have been detected on welded metal zones after subjecting them to flux-cored arc welding with an E2209T1-1 flux-cored filler metal. These oxide inclusions directly affect mechanical properties of the welded metal. Hence, a correlation requiring validation has been proposed between oxide inclusions and mechanical impact toughness. Accordingly, this study employed scanning electron and high-resolution transmission electron microscopy to assess the correlation between oxide inclusions and mechanical impact toughness. Investigations revealed that the spherical oxide inclusions comprised a mixture of oxides in the ferrite matrix phase and were close to intragranular austenite. The oxide inclusions observed were titanium- and silicon-rich oxides with amorphous structures, MnO with a cubic structure, and TiO2 with an orthorhombic/tetragonal structure, derived from the deoxidation of the filler metal/consumable electrodes. We also observed that the type of oxide inclusions had no strong effect on absorbed energy and no crack initiation occurred near them.