Continuously reinforced thermoplastic composites are widely used in structural applications due to their toughness, light weight, and shorter process cycle. Moreover, they provide flexibility in design and material selection. Unlike thermoset composites, continuous fiber content to maximize mechanical properties in thermoplastic composites has not been well investigated. In this paper, three thermoplastic systems are investigated to study the optimum content of continuous fiber reinforcement. These systems include carbon fiber/polyphenylene sulfide (PPS), glass fiber/PPS, and glass fiber/high-density polyethylene (HDPE). Tapes were made at several fiber contents, and samples were compression molded and tested using thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile, 3-point flexure, and short-beam shear tests. Results revealed that higher fiber content led to an increase in the glass transition and melt transition temperatures of the polymer. Some mechanical properties increased with fiber content and then began to decrease upon further addition of fibers, while other properties, such as ductility and interfacial bond strength, decreased with more reinforcement. Furthermore, the optimum fiber contents to maximize mechanical properties are different for different properties and different materials.
Read full abstract