Nitrophenol pollutants, including para-nitrophenol (p-NP), are known for their harmful environmental impact due to their persistence, toxicity, and widespread distribution in water sources. While biodegradation generally offers a more effective removal of organic pollutants compared to chemical or physical methods, degrading persistent and toxic compounds like p-NP remains challenging. In this study, a microbial community derived from food processing wastewater was immobilized on coconut coir and adapted to p-NP before being employed for p-NP biodegradation. The spectroscopic analysis demonstrates the effective biodegradation performance of the adapted microbial community, achieving 99% degradation of 50 mg L⁻1 p-NP in 38 min and 250 mg L⁻1 p-NP in 4.65 h. The degradation ability of immobilized cells was determined across a broad range of stirring speeds, temperatures, pH levels, and p-NP solution volumes. Complete mineralization of p-NP was confirmed by chemical oxygen demand (COD) measurements of the treated solution and in-situ CO2 generation. Notably, the p-NP degradation performance of the adapted immobilized microbial community remained stable for the first 40 days, with only a slight decrease observed after 47 days of cold preservation at 4 °C. An average p-NP degradation rate of 0.75 mg L⁻1 min⁻1 was maintained over 54 consecutive runs. Significant alterations in microbial diversity were identified through 16S metabarcoding analysis. The unadapted microbial community comprised a diverse range of genera, while the adapted community showed reduced diversity with an enrichment of specific genera known for p-NP degradation, such as unidentified members of the Micrococcaceae family, Paenarthrobacter spp., and Zoogloea spp.
Read full abstract