Nanocrystalline Ni75Fe25 (Ni3Fe) powders were prepared by mechanical alloying process using a vario-planetary high-energy ball mill. The intermetallic Ni3Fe formation and different physical properties were investigated, as a function of milling time, t, (in the range 6 to 96 h range), using X-Ray Diffraction (XRD) and Mössbauer Spectroscopy techniques. X-ray diffraction were performed on the samples to understand the structural characteristics and get information about elements and phases present in the powder after different time of milling. The refinement of XRD spectra revealed the complete formation of fcc Ni (Fe) disordered solid solution after 24 h of milling time, the Fe and Ni elemental distributions are closely correlated. With increasing the milling time, the lattice parameter increases and the grains size decreases. The Mössbauer experiments were performed on the powders in order to follow the formation of Ni3Fe compound as a function of milling time. From the adjustment of Mössbauer spectra, we extracted the hyperfine parameters. The evolution of hyperfine magnetic field shows that the magnetic disordered Ni3Fe phase starts to form from 6 h of milling time and grow in intensity with milling time. For the milling time more than 24 h, only the Ni3Fe disordered phase is present with a mean hyperfine magnetic field of about 29.5 T. The interpretation of the Mossbauer spectra confirmed the results obtained by XRD.
Read full abstract