In this research, cellulose acetate (CA) and CA nanocomposite membranes, reinforced with mass fractions of cellulose nanofibrils (CNF), are prepared using the phase separation technique. The membranes are extensively characterized using several techniques: Fourier Transform Infrared (FTIR) spectroscopy confirms the chemical structures, while Scanning Electron Microscopy (SEM) reveals their surface morphology. Mechanical characterization is conducted to explore the mechanical behavior of the membranes under wet and dry conditions through tensile testing. The mechanical properties of CA and CA-CNF membranes are also estimated using the Mori-Tanaka mean-field homogenization method and compared to experimental findings. The flux performance for pure and dam water, assessed at 3 bar, demonstrates that CNF reinforcement notably enhances the CA membrane's performance, particularly in flux rate and fouling resistance. The CA membrane shows high efficiency in removing Fe2+, Ba2+, and Al3+ from dam water, while CA-CNF membranes exhibit a varied range of removal efficiencies for the same ions, with the 0.5 wt % CNF variant showing superior resistance to surface fouling. Additionally, while CNF increases tensile strength and stiffness, it leads to earlier failure under smaller deformations, especially at higher concentrations. This research provides a detailed assessment of CA and CA-CNF membranes, examining their chemical, structural, and mechanical properties alongside their effectiveness in water treatment applications.
Read full abstract