The kinetics of a dynamical system comprising two metastable states is formulated in terms of a finite-time propagator in phase space (position and velocity) adapted to the underdamped Langevin equation. Dimensionality reduction to a subspace of collective variables yields familiar expressions for the propagator, committor, and steady-state flux. A quadratic expression for the steady-state flux between the two metastable states can serve as a robust variational principle to determine an optimal approximate committor expressed in terms of a set of collective variables. The theoretical formulation is exploited to clarify the foundation of the string method with swarms-of-trajectories, which relies on the mean drift of short trajectories to determine the optimal transition pathway. It is argued that the conditions for Markovity within a subspace of collective variables may not be satisfied with an arbitrary short time-step and that proper kinetic behaviors appear only when considering the effective propagator for longer lag times. The effective propagator with finite lag time is amenable to an eigenvalue-eigenvector spectral analysis, as elaborated previously in the context of position-based Markov models. The time-correlation functions calculated by swarms-of-trajectories along the string pathway constitutes a natural extension of these developments. The present formulation provides a powerful theoretical framework to characterize the optimal pathway between two metastable states of a system.