Clinical isolates of multi-drug resistant Acinetobacter baumannii are a major cause of nosocomial infections, often attributed to the highly adaptable genome that helps it tothrive under environmental selection pressure. Here, we aim to provide genotypic-based surveys and comparative whole genome sequencing (WGS) analysis to explore the genomics of the rare pyomelanin-forming clinical isolates of A. baumannii from India. A total of 54 clinical isolates of A. baumannii obtained from two tertiary care hospitals were genotyped using repetitive sequence-based PCR(REP-PCR) for elucidating their molecular epidemiology, followed by their resistance profiling through the determination of minimum inhibitory concentration using the micro broth dilution method. The isolates' virulence and antibiotic-resistant determinants were detected by PCR screening, followed by biofilm quantification. Pyomelanin pigment produced by A. baumannii isolates was isolated and chemically characterized. Finally, WGS of three pigment-producing and one non-producing A. baumannii strains was performed to explore the factors contributing to their variability. REP-PCR genotyping identified around 8 clusters, with all isolates being multidrug-resistant (MDR). Pyomelanin-producing isolates were strong biofilm formers, characterized by the concurrent presence of 'pgaB, BfmR, BfmS, ompA, and cusE' biofilm-related genes. These pigmented strains belonged to ST2Pas and co-harbored blaOXA-23, blaADC-25, aph (3')-VIa, armA, aph (6)-Id, tet(B) and msr(E) genes. Thirteen common IS elements and biosynthetic gene clusters of arylpolyene, NI-siderophore, and NRP-metallophore were identified. Notably, genomic islands containing aminoglycoside 3'-phosphotransferase, oxidative stress, two-component response regulators, efflux pump-related, toxin-antitoxin protein, and virulence-related genes were also mapped by WGS. The pyomelanin-forming isolates were MDR and virulent. The elucidation of WGS analysis provided critical insights for understanding the epidemiology, virulome, and mobilome of rare pigment-producing A. baumannii strains.
Read full abstract