This paper studies the aerodynamic characteristics of high-speed trains (HSTs) featuring aerodynamic braking plates installed on the streamlined sections, employing the improved delayed detached eddy simulation (IDDES) method at Re = 5.0 × 105. The precision of the numerical simulation methodology has been validated through reduced-scale wind tunnel experiments. A comparative analysis has been conducted on the characteristics of slipstream, wake flow, and upper flow between the original configuration (OC) and the braking configuration (BC) of the HSTs. The findings reveal that the application of braking plates promotes significant separation phenomena around the HSTs, enhancing the slipstream velocity distribution. In the BC, compared to the OC, the maximum value of the time-averaged slipstream velocity has increased by approximately 134.9% and 76.8% at the trackside and platform positions, respectively. Additionally, the TSI value of the slipstream velocity shows increases of around 100.4% and 210.4% at the trackside and platform positions, respectively. Meanwhile, the turbulence fluctuations within the wake region have been enhanced, with the formation of a longitudinal vortex alongside the railway subgrade, whose core nearly covers the TSI positions. Notably, obvious shifts occur within the upper flow field, which significantly strengthens both flow turbulence and slipstream velocity, potentially influencing components on the upper surface of HSTs, such as the pantograph. The deployment of braking plates contributes to a significant increase in overall vehicle pressure drag, thereby enhancing the train's aerodynamic drag. Relative to the OC, the aerodynamic drag of the HST has increased by approximately 235.4% in the BC.
Read full abstract