Abstract This article reviews the major research and development on spouted beds (SBs). Due to its unique structural and flow characteristics, the SB is a very successful system in most applications. Two-phase and sometimes three-phase interactions generate a large number of variables to be noted in each process. Up-to-date information on the fundamentals and applications of SBs has been briefly presented, based on the published works. Thousands of interesting studies on hydrodynamic characteristics, numerical simulations, and new applications of SBs are reported. In the first step, the present work presents a review of hydrodynamic characteristics (circulation of solids in SB, measurement techniques for particle tracking and empirical hydrodynamics, pressure drop, maximum spoutable height, minimum spouting velocity, and diameter of the spout). In the second step, main mathematical models and computational fluid dynamics (CFD) simulation of the SB to predict and analyze different processes are described. Some main mathematical modeling and the recent advances of two fluid methods and discrete element method approaches in CFD simulation of SBs are summarized. In the last step, some new applications of the SB are presented. As the result of this review, we can observe the importance of further development of hydrodynamics structure, working on modeling and related correlations and improve the applications of SBs.