The modulation transfer function (MTF) and signal-to-noise ratio (SNR) are the key parameters to evaluate quantitatively the image quality and spectral performance in a polarization imaging spectrometer based on a Savart polariscope. In order to evaluate the image quality and reflect the detecting ability of the imaging spectrometer, calibration experiments on the MTF, SNR, and spectral resolution were carried out and some important conclusions were obtained. For incident radiance values 4.464, 3.119, and 0.523 w/m2·sr, the average SNRs of the interferogram were 500, 400, and 200 dB, respectively, and the MTF is 0.24. During the spectral resolution calibration, the maximum optical path difference was set as 57.08 µm, and the measured value is greater than the theoretical value, which is mainly caused by the structural design of the polarization imaging spectrometer. For the wavelength range of [500 nm, 600 nm], the SNR of the spectrum is lower and about 50 dB, while the SNR is obviously higher in a range of λ∈[600 nm, 960 nm]. This study provides a theoretical and practical guidance for improving the image quality and judging the spectral performance of the polarization imaging spectrometer.
Read full abstract