The growing population and expansion of rural activities, along with changing climatic patterns and the need for water during drought periods, have led to a rise in the water demand worldwide. As a result, the construction of water storage structures such as dams has increased in recent years to meet the water needs. However, dam construction can bring significant alterations to the natural flow regime of rivers, and it is therefore essential to understand the potential effects of human structures on the hydrological regime of rivers to reduce their destructive impacts. This study analyzes the hydrological changes in the Shahrchai River in response to the Shahrchai Dam construction in Urmia, Iran. The study period was from 1950 to 2017 at the Urmia Band station. The Indicators of Hydrological Alteration (IHA) were used to analyze the hydrological changes before and after regulating, accounting for land use changes and climatic factors. The results revealed the adverse effects of the Shahrchai Dam on the hydrological indices. The analysis showed an increase in the average flow rate during the summer season and a decrease in other seasons. However, the combined effects of water transferring for drinking purposes, a decrease in permanent snow cover upstream of the dam, and an increase in water use for irrigation and agricultural purposes resulted in a decrease in the released river flow. Furthermore, the minimum and maximum daily flow rates decreased by approximately 85% and 65%, respectively, after the construction of the Shahrchai Dam. Additionally, the number of days with maximum flow rates increased from 117 days in the pre-dam period to 181 days in the post-dam period. As a concluding remark, the construction of the Shahrchai Dam, land use/cover changes, and a decrease in permanent snow cover had unfavorable effects on the hydrological regime of the river. Therefore, the hydrological indicators should be adjusted to an acceptable level compared to the natural state to preserve the river ecosystem. The findings of this study are expected to guide water resource managers in regulating the sustainable flow regime of permanent rivers.
Read full abstract