Objective: In this study, we reported the synthesis of a novel series of 5-aryl-4(chloroacetylamino)-3-mercapto-1, 2,4-triazoles. Methods: These compounds were synthesized to screen for anticonvulsant effects in a Maximal Electroshock Seizure (MES) model and a Subcutaneous Pentylenetetrazole (sc‐PTZ) seizure model in rats. Furthermore, molecular docking studies with gamma-aminobutyric acid and in silico ADME prediction were carried out to determine interactions of these compounds with Benzodiazepine (BZD) receptors and their similarity with standard drugs. The rotarod test was used to evaluate neurotoxicity. Results: 08 out of 40 compounds exhibited neurotoxicity at the maximum tested dose. Most of the compounds showed anti‐MES effects without any signs of neurological deficit. All the tested compounds significantly reduced seizures induced by PTZ compared to the control group. Carbamazepine and phenytoin were used as positive controls for anticonvulsant effects. Compounds 3d, 3h (a diphenylamine derivative of 5-aryl-4(chloroacetylamino)-3-mercapto-1,2,4-triazole), and 4a (a piperidinyl derivative of 5-aryl-4(chloroacetylamino)-3-mercapto-1,2,4-triazole) exhibited greater safety than phenytoin and carbamazepine in terms of neurotoxicity. The docking scores for the identified compounds 3d, 3h and 4a was 6.5133; 6.6558 and 5.6524, respectively. Nearly all the compounds (90%) demonstrated decreased locomotor activity. Conclusion: It is gratifying that the compounds with higher hydrophobicity showed better performance in the seizure models. Many triazole derivatives holding a suitable aryl or alkyl group gave a better anticonvulsant activity in their analogs.
Read full abstract