Sinusitis, a common disease of the maxillary sinus, is initially managed with saline solution and medication, resulting in the resolution of symptoms within a few days in most cases. However, Functional Endoscopic Sinus Surgeries are recommended if pharmacological treatments prove ineffective. This research aims to investigate the effects of maxillary sinus surgery on the airflow field, pressure distribution within the nasal cavity, and overall ventilation. This study utilized a three-dimensional realistic nasal cavity model constructed from CT images of a healthy adult. Virtual surgery including uncinectomy with Middle Meatal Antrostomy, two standard procedures performed during such surgeries, was performed on the model under the supervision of a clinical specialist. Two replicas representing pre- and post-operative cases were created using 3D printing for experimental purposes. Various breathing rates ranging from 3.8 to 42.6 L/min were examined through experimental and numerical simulations. To ensure the accuracy of the numerical simulations, the results were compared to measured pressure data, showing a reasonable agreement between the two. The findings demonstrate that uncinectomy and Middle Meatal Antrostomy significantly enhance the ventilation of the maxillary sinuses. Furthermore, increasing inspiratory rates leads to further improvements in ventilation. The static pressure distribution within the maxillary sinuses remains relatively uniform, except in regions close to the sinus ostium, even after surgical intervention.