The Tobacco Mosaic Virus (TMV) is a critical plant virus that can cause a significant drop in crop yield. To understand how recombinant coat-protein impacts the affinity and assembly of TMV’s subunits, research is being conducted to assess the effect of recombinant protein on virus resistance. To develop a recombinant coat-protein that can lower TMV infection rates in plants, a design strategy was employed that involves creating defective viral subunits leading to incorrect assembly. This method is similar to using defective puzzle pieces that form incorrect connections resulting in disrupted viral assembly, ultimately affecting the production of mature virus particles. The study investigated the effect of mutations on one side of the Tobacco mosaic virus coat-protein using molecular modeling and dynamics simulation techniques. The simulation showed that the recombinant subunit had lower flexibility (between 0.15 to 0.20 nm) compared to the other subunits (between 0.45 to 0.75 nm), which was attributed to the smaller loop area. The study suggests an effective recombinant coat-protein with the potential to prevent virus infection by disrupting the coat-protein assembly process. This approach can be used to design a plant vaccine against viruses. Developing a recombinant protein can also provide benefits to plants such as protection from pests and enhancement of growth and productivity.
Read full abstract