Liposomes carrying differential charges have been extensively studied for their role in stimulating dendritic cells (DCs), major antigen-presenting cells, known to serve as a pivotal bridge between innate and adaptive immunity. However, the impact of the differentially charged liposomes on activating DCs remains to be understood. In this study, we have investigated the impact of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-based neutral, anionic, and cationic liposomes on the uptake, immunostimulation, and intracellular fate in mouse bone-marrow-derived DCs. We observed that liposomes could induce phenotypic maturation of DCs by inducing the expression of costimulatory molecules (CD40 and CD86) and production of cytokines tumor necrosis factor-α, interleukin-12,and nitric oxide. Interestingly, admixing monophosphoryl lipid A with charged liposomes further enhances the expression of the costimulatory molecules and production of cytokines, with preferential activation by positively charged liposomes. Fluorometric analysis using a pH-sensitive dye and flow-cytometry-based pathway inhibition assays revealed that cationic liposomes were taken up more efficiently by DCs through endocytosis and transported to neutral compartments for further processing, whereas anionic and neutral liposomes were inclined to accumulate in acidic compartments. These findings therefore endorse the use of cationic DSPC liposomes as a preferred option for vaccine delivery vehicles over neutral and negatively charged liposomes, particularly for the preferential activation of DCs.
Read full abstract