Quantitative mass spectrometry imaging (qMSI) provides the relative or absolute analyte quantities in a biological specimen in a spatially resolved manner. However, the chemical complexity and physical structure of biological specimens often require one to precisely account for matrix effects in qMSI platforms. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) completely ablates a volume of cryosectioned tissue. This enables the use of a normalization standard that is sprayed underneath the tissue for qMSI applications. Complete sampling has shown to be a significant advantage for qMSI by IR-MALDESI; however, the impact of high tissue heterogeneity has not been systematically studied or quantified. The bias introduced by tissue heterogeneity was investigated by uniformly spraying standards beneath and on top of a whole-body zebrafish section. The quantitative relationship between the signals of the two standards was investigated across this multi-organ model to serve future qMSI experiments by IR-MALDESI and other laser ablation-based sampling methods. The overall ratio between the standards sprayed on top of and beneath the tissue sections remained constant across the entire whole-body section despite significant tissue heterogeneity (e.g., gills, heart, and liver). Additionally, we noted that thinner and/or sucrose-embedded tissues improved these ratios, which will inform future qMSI investigations.
Read full abstract