A new fast recursive algorithm is proposed for multiplying matrices of order n = 3q (q > 1). This algorithm is based on the hybrid algorithm for multiplying matrices of odd order n = 3μ (μ = 2q – 1, q > 1), which is used as a basic algorithm for μ = 3q (q > 0). As compared with the well-known block-recursive Laderman’s algorithm, the new algorithm minimizes by 10.4% the multiplicative complexity equal toWm = 0 896n2.854 multiplication operations at recursion level d = log3 n – 3 and reduces the computation vector by three recursion steps. The multiplicative complexity of the basic and recursive algorithms are estimated.