Voxel-Based (VB) analysis embraces a multifaceted ensemble of sophisticated techniques, lying at the boundary between image processing and statistical modeling, that allow for a frequentist inference of pathophysiological properties anchored to an anatomical reference. VB methods has been widely adopted in neuroimaging studies and, more recently, they are gaining momentum in radiation oncology research. However, the price for the power of VB analysis is the complexity of the underlying mathematics and algorithms. In this paper, we present the Multi-pAradigM voxel-Based Analysis (MAMBA) toolbox, which is intended for a flexible application of VB analysis in a wide variety of scenarios in medical imaging and radiation oncology. The MAMBA toolbox is implemented in Matlab. It provides open-source functions to compute VB statistical models of the input data, according to a great variety of regression schemes, and to derive VB maps of the observed significance level, performing a non-parametric permutation inference. The toolbox allows for including VB and global outcomes, as well as an arbitrary amount of VB and global Explanatory Variables (EVs). In addition, the Matlab Parallel Computing Toolbox is exploited to take advantage of the perfect parallelizability of most workloads. The use of MAMBA was demonstrated by means of several realistic examples on a synthetic dataset mimicking a radiation oncology scenario. MAMBA is an open-source toolbox, freely available for academic and non-commercial purposes. It is designed to make state-of-the-art VB analysis accessible to research scientists without the programming resources needed to build from scratch their own software solutions. At the same time, the source code is handed out for more experienced users to complement their own tools, also customizing user-defined models. MAMBA guarantees high generality and flexibility in the design of the statistical models, significantly expanding on the features of available free tools for VB analysis. The presented toolbox aims at increasing the reach of VB studies as well as the sharing of research results.
Read full abstract