BackgroundBirth weight (BW) is an indicator of fetal growth and development. Previous studies showed inconsistent results on the association of ambient particulate matter (PM) exposure with BW, and the role of maternal thyroid function has not been clarified. MethodsWe recruited 1711 gravidas between 2017 and 2019 in Henan, China. All participants were followed up until delivery. Daily concentrations of PM, including PM2.5 and PM10, were evaluated by using the spatial-temporal model. Maternal thyroid hormone (TH) levels were quantified by electrochemiluminescent microparticle immunoassay. Linear regression models were employed to examine the association among PM, BW, and maternal TH. Mediating effects of maternal TH interrelated with PM exposure on BW were investigated by causal mediation analyses. ResultsA total of 1049 gravidas were identified. We found that per 10 µg/m3 increase in PM2.5 and PM10 were associated with a decreased BW of 9.941 g, and 7.758 g (PM2.5: 95 %CI: −18.184, −1.698; PM10: 95 %CI: −14.436, −1.080). An inverse correlation of maternal FT4 levels with BW was found, with the pooled β of −319.983 g (95 %CI: −483.216, −156.750). We found a prominent positive correlation between gestational FT4 and PM exposure (PM2.5: β = 0.004, 95 %CI: 0.001, 0.007; PM10: β = 0.003, 95 %CI: 0.000, 0.006). Mediation analysis found that FT4 levels mediated the relationship between maternal PM exposure and BW, ranging from 5.55 % to 15.86 %. ConclusionsMaternal PM exposure may induce a reduction in newborn BW by affecting the maternal TH concentrations.
Read full abstract