AbstractAutism spectrum disorder (ASD) is a complex neurodevelopmental condition that combines genetic and environmental factors. The human microbiota is colonized by permanent or transitory microorganisms, depending on the host and the external factors controlling their permanence. The composition of the gut microbiota (GM) in ASD individuals is notably different from that in controls, which may contribute to the clinical conditions observed in these individuals. This study aimed to indirectly investigate the influence of GM on the gut‐brain axis in individuals with ASD and controls by analyzing environmental factors that contribute to the microbiota composition. Two questionnaires were designed to collect data, one for the ASD Group (ASDG) and the other one for the Control Group (CG). The raw data from both questionnaires were collected from 2772 respondents. After triage, answers from 1687 ASD individuals, along with 466 respondents from the CG, were analyzed, resulting in a total of 2237 respondents. Our results showed that gastrointestinal problems (GP) escalate as individuals age and become more prominent in ASD individuals. In contrast, feeding problems (FP) did not appear to escalate in either group as individuals aged, even though the FP decreased in the CG. ANOVA revealed significant differences in breastfeeding status compared to GPs among preterm control individuals born via cesarean section (p‐value = 0.027). The mean values of GP for breastfed and nonbreastfed individuals, for ASDG (0.257; 0.268) and CG (0.105; 0.248), highlighted the differences in breastfeeding effects on GP for the study groups. The use of antibiotics during pregnancy seemed to be significant for GPs in the ASDG only for breastfed individuals (p‐value <0.001), but not in the CG group. In conclusion, variables such as mode of delivery, FPs, type of birth, and length of breastfeeding do not seem to be determining factors for GP in the ASDG but are relevant for the CG. However, for ASDG individuals whose mothers took antibiotics during pregnancy, breastfeeding may act as a protective factor, as maternal antibiotic administration during pregnancy seems to aggravate GP‐values across the ages of the participants. Considering GP as a proxy for GM and recognizing the importance of GM composition for central nervous system (CNS) function, it appears that in individuals with ASD, GM seems to be more dependent on other factors, which might be linked to the genetic background of each one. These findings suggest that future studies of the gut‐brain axis in individuals with ASD might consider the individual's genetic background, environmental factors, and GM.
Read full abstract