This study presents a novel Fe-CNs-P/S carbon composite material, synthesized by doping elements P and S into NH2-MIL-101 (Fe) using the carbonization method. The material’s application in sustainable water treatment was evaluated, focusing on its effectiveness in activating persulfate for pollutant degradation. The research thoroughly investigates the synthesis process, structural characteristics, and performance in degrading pollutants. The results indicate that Fe-CNs-P/S-5 with 50% P and S co-doping is higher than that of other samples, where the degradation rate of TC in 30 min is as high as 98.11% under the optimum conditions, that is temperature at 25 °C, 0.05 g/L of catalyst concentration, and 0.2 g/L of PMS concentration. The composite material demonstrates robust versatility and stability, maintaining high degradation efficiency across multiple organic pollutants, with no significant reduction in catalytic performance after four cycles. Furthermore, the free radical quenching experiments display that the singlet oxygen 1O2 is the main active species. It is demonstrated that the doping of P and S play a role in the enhancement of PMS activation over the Fe-CNs-P/S catalyst. This material demonstrates remarkable efficacy in treating a range of organic contaminants and exhibits excellent reusability, presenting a promising approach for enhancing sustainability in water treatment applications.
Read full abstract