BackgroundSequencing-based genetic testing is widely used in biomedical research, including pathogenic microorganism detection with metagenomic next-generation sequencing (mNGS). The application of sequencing results to clinical diagnosis and treatment relies on various interpretation knowledge bases. Currently, the existing knowledge bases are primarily built through manual knowledge extraction. This method requires professionals to read extensive literature and extract relevant knowledge from it, which is time-consuming and costly. Furthermore, manual extraction unavoidably introduces subjective biases. In this study, we aimed to automatically extract knowledge for interpreting mNGS results.MethodWe propose a novel approach to automatically extract pathogenic microorganism knowledge based on the question-answer (QA) model. First, we construct a MicrobeDB dataset since there is no available pathogenic microorganism QA dataset for training the model. The created dataset contains 3,161 samples from 618 published papers covering 224 pathogenic microorganisms. Then, we fine-tune the selected baseline model based on MicrobeDB. Finally, we utilize ChatGPT to enhance the diversity of training data, and employ data expansion to increase training data volume.ResultsOur method achieves an Exact Match (EM) and F1 score of 88.39% and 93.18%, respectively, on the MicrobeDB test set. We also conduct ablation studies on the proposed data augmentation method. In addition, we perform comparative experiments with the ChatPDF tool based on the ChatGPT API to demonstrate the effectiveness of the proposed method.ConclusionsOur method is effective and valuable for extracting pathogenic microorganism knowledge.
Read full abstract