Resolution and mapping bandwidth are the two most important image performance indicators that reflect satellite synthetic aperture radar (SAR) imaging reconnaissance capability. The PRI-staggered signal can simultaneously achieve high resolution in azimuth and wide swath during SAR imaging, and is an important signal form of SAR. It is important for anti-SAR reconnaissance to de-interleave the staggered PRI signal from the mixed signals. To address the problem that the existing staggered signal de-interleaving algorithms cannot accommodate PRI jitter and are computationally inefficient, this paper proposes an efficient algorithm for de-interleaving staggered PRI signals. A clustering-based square sine wave interpolation method and a threshold criterion are proposed, improving computational efficiency while suppressing interference between sub-PRIs and the frame period of the staggered PRI signal. In addition, a sequence retrieval algorithm incorporating matched filter theory is proposed to improve the separation accuracy of radar pulse sequences. The simulation shows that the novel algorithm can adapt to PRI jitter and de-interleave staggered PRI signals from mixed signals with high efficiency. Compared with the existing staggered signal de-interleaving algorithm, the computational efficiency is improved by an order of magnitude.
Read full abstract