E-commerce is a massive sector in the US economy, generating $767.7 billion in revenue in 2021. E-commerce sites maximize their revenue by helping customers find, examine, and purchase products. To help users easily find the most relevant products in the database for their individual needs, e-commerce sites are equipped with a product retrieval system. Many of these modern retrieval systems parse user-specified constraints or keywords embedded in a simple natural language query, which is generally easier and faster for the customer to specify their needs than navigating a product specification form, and does not require the seller to design or develop such a form. These natural language product retrieval systems, however, suffer from low relevance in retrieved products, especially for complex constraints specified on products. The reduced accuracy is in part due to under-utilizing the rich semantics of natural language, specifically queries that include Boolean operators, and lacking of the ranking on partially-matched relevant results that could be of interest to the customers. This undesirable effect costs e-commerce vendors to lose sales on their merchandise. In solving this problem, we propose a novel product retrieval system, called QuePR\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extit{QuePR}}$$\\end{document}, that parses arbitrarily simple and complex natural language queries with(out) Boolean operators, utilizes combinatorial numeric and content-based matching to extract relevant products from a database, and ranks retrieved resultant products by relevance before presenting them to the end-user. The advantages of QuePR\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extit{QuePR}}$$\\end{document} are its ability to process explicit and implicit Boolean operators in queries, handle natural language queries using similarity measures on partially-matched records, and perform best guess or match on ambiguous or incomplete queries. QuePR\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extit{QuePR}}$$\\end{document} is unique, easy to use, and scalable to all product categories. To verify the accuracy of QuePR\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extit{QuePR}}$$\\end{document} in retrieving relevant products on different product domains, we have conducted different performance analyses and compared QuePR\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extit{QuePR}}$$\\end{document} with other ranking and retrieval systems. The empirical results verify that QuePR\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extit{QuePR}}$$\\end{document} outperforms others while maintaining an optimal runtime speed.
Read full abstract