Antarctic krill (Euphausia superba), a shrimp-like marine crustacean, has become a beneficial source of high-quality animal protein. Meanwhile, a special focus has been placed on its potential sensitization issue. In this study, a 35 kDa protein was purified and identified to be Antarctic krill tropomyosin (AkTM) by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The purified TM showed a strong IgE-binding capacity to shrimp/crab-allergic patients' sera, indicating that TM is the primary allergen in Antarctic krill. Simulated gastrointestinal digestion revealed that the digestion stability of TM to pepsin was higher than that to trypsin. The strong degranulation triggered by TM in RBL-2H3 cells suggested that AkTM has a strong sensitization capacity. The TM-sensitized BALB/c mice displayed severe anaphylactic symptoms; high levels of TM-specific IgE, sIgG1, and histamine; and increased IL-4, indicating that AkTM could provoke IgE-mediated allergic reactions. Bioinformatics prediction, indirect competition ELISA, and mast cell degranulation assay were used to map the antigenic epitopes of AkTM. Finally, nine peptides of T43-58, T88-101, T111-125, T133-143, T144-155, T183-197, T223-236, T249-261, and T263-281 were identified as the linear epitopes of AkTM. The findings may help us develop efficient food processing techniques to reduce krill allergy and gain a deeper comprehension of the allergenicity of krill allergens.
Read full abstract