The incorporation of artificial intelligence (AI) into medical practice has considerably improved the treatment of autoimmune disorders, opening new avenues for personalized therapy. This study examines advances in AI-driven therapeutic options for autoimmune illnesses, including both current and developing treatments. Traditional therapies for autoimmune illnesses, such as immunosuppressive therapy and biologics, attempt to alleviate symptoms but frequently fall short of offering personalized care. Emerging approaches, such as precision medicine and artificial intelligence, are altering the landscape by harnessing massive volumes of patient data to better customize therapies. AI holds the ability to transform autoimmune disease therapy by enhancing diagnosis, discovering biomarkers, optimizing drug development, and personalized treatment procedures. Real-world applications and case studies are examined to demonstrate how machine learning algorithms have improved treatment tactics for rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. While AI has many advantages, like enhanced diagnosis accuracy and personalized therapy, it also has drawbacks, such as data privacy, the requirement for vast datasets, algorithmic bias, and a lack of explain ability. This study emphasizes the advantages of AI, such as improved patient stratification and predictive modelling, while also discussing its drawbacks, such as ethical problems and the possibility of data exploitation. AI presents intriguing prospects for treating autoimmune diseases, but more research and cooperation are required to overcome current difficulties and completely integrate AI into clinical practice.
Read full abstract