Jellyfish play an important role in the material cycling and energy flow of food webs, and massive aggregations may have deleterious consequences for local fisheries; yet a theoretical framework of the trophic effects of jellyfish blooms on coastal fisheries is unclear. To address this knowledge gap, we assessed the trophic interactions between cooccurring bloom jellyfish and dominant fish groups (omnivorous fish and piscivorous fish) in the coastal waters of China (CWC) via stable isotope analysis; we subsequently discussed how jellyfish blooms may affect energy flow through coastal ecosystems. Our results indicate a considerable degree of trophic overlap (mean ratio > 65 %) between jellyfish and small omnivorous fish (< 10 cm), highlighting a similarity in feeding habits, while the overlap ratio decreased to <55 % of the large omnivorous fish group (> 10 cm). Relatively higher trophic levels and smaller overlaps of large omnivorous fish were found in the ecosystem with high jellyfish biomass, which suggested that they may reinforce the ontogenetic trophic shift pattern to alleviate the potential for resource competition with jellyfish under conditions of jellyfish explosion. The smallest trophic overlap (< 20 %) highlighted the strong trophic differentiation between jellyfish and piscivorous fish. Additionally, our study suggested that a massive aggregation of jellyfish can negatively influence zooplankton but may not transfer energy further up efficiently, implying a weak trophic coupling between jellyfish and upper-trophic levels in CWC ecosystems. Thus, we speculate that jellyfish play an important role in shaping pathways involved in the energy transfer of food webs and that large blooms may negatively affect fisheries through bottom-up control affecting prey availability. In general, these results hold strong potential to further improve the understanding of the trophic interactions between jellyfish and fish populations. Furthermore, this study provides valuable data for predicting the consequences of jellyfish blooms on ecosystems, and is crucial for ecosystem-based management of coastal fisheries.