The extraction and stripping of phenol using a solution of tributyl phosphate in kerosene in a hydrophobic polypropylene hollow fiber membrane contactor has been studied. The effect of the aqueous and the organic phase flow rates on the overall mass transfer coefficient for both extraction and stripping steps was investigated. Experimental values of the overall mass transfer coefficient were determined and compared with predicted values from the resistance in series model. Results showed that the overall mass transfer coefficients for extraction were about one order of magnitude greater than those measured during the stripping process. The experimental values were in good agreement with the predicted values for the extraction module. However, the predicted values were slightly overestimated for the stripping module. The individual mass transfer resistances were analyzed and the rate-controlling steps of mass transfer were also identified in both extraction and stripping modules. The major resistance in extraction and stripping was in the aqueous phase and in the membrane phase, respectively.