Pelagic Mysidacea and Decapoda have important roles in marine ecosystems. However, information on their life histories is extremely limited. This study aimed to evaluate the life cycles of pelagic Mysidacea and Decapoda in the Oyashio region, Japan. Production of the four dominant species was estimated by combining body mass (DM) data and abundance data. Mysidacea belonging to 5 species from 5 genera occurred in the study area. Their abundance and biomass ranged between 11.7-50.1 ind. m−2 and 1.2-7.9 g wet mass (WM) m−2, respectively. Six species from 6 genera belonged to Decapoda, and their abundance and biomass ranged between 9.0-17.3 ind. m−2 and 3.0-17.3 g WM m−2, respectively. Based on body length histograms, there were two to four cohorts for the three dominant mysids and one dominant decapod on each sampling date. Life histories of the two numerically dominant mysids (Eucopia australis and Boreomysis californica) followed similar patterns: recruitment of young in May, strong growth from April to June, and a longevity of three years. Life cycles of the two minor species (the mysid Meterythrops microphthalma and the decapod Hymenodora frontalis) were not clear because of their low abundance. The timing of recruitment of the young and the strong juvenile growth for the two dominant mysids corresponds with the season when their prey is abundant. The annual production of the dominant mysid species was 14.0 mg DM m−2 (B. californica) and 191.8 mg DM m−2 (E. australis). Annual production/biomass () ratios ranged between 0.242 (H. frontalis) and 0.643 (M. microphthalma). Compared with other regions, the Oyashio region showed high production and low ratios. The high production in the Oyashio region may be related to the high biomass of these species. Because of the low temperature conditions (3°C), pelagic mysids and decapods in the Oyashio region may have slower growth, longer generation times and lower ratios than in other oceans.