Natural killer (NK) cells from nonimmunized mice capable of lysing EL-4 (C57BL/6 strain H-2b) tissue culture-adapted lymphoma cells have been analyzed and compared with NK cells which lyse YAC-1 (A-strain, H-2a) lymphoma cells. A correlation was seen in the ability of inbred and B6D2F1 mice to reject C57BL/6 (B6) bone-marrow grafts and the ability of their spleen cells to lyse EL-4 cells in vitro. This suggests that hybrid or hemopoietic histocompatibility antigens, (Hh-1b), relevant in the rejection of B6 stem cells may also be the relevant target structures for the anti-EL-4 NK cells. Certain features of these NK cells are similar to the NK cells reactive against YAC-1 cells. Both types of NK cells are present in athymic nude mice, are not affected by treatment with anti-immunoglobulin plus complement, and are not depleted by techniques that remove macrophages. NK activity against both targets is stimulated 3 d after injection of Corynebacterium parvum, and 24 h after challenge with polyinosinic:polycytidylic acid. Hydrocortisone acetate and cyclophosphamide lead to reduction of NK activity within 2-3 d after administration. However, the anti-YAC and anti-EL-4 NK reactivities differed in several important respects. Treatment of mice with 89Sr, the bone-seeking isotope, to deplete marrow-dependent cells, depleted the anti-YAC-1 but not anti-EL-4 cell functions. Anti-EL-4 NK cells were unaffected by silica particles in vivo or in vitro; the NK cells reactive to EL-4 cells matured functionally much earlier in life (5 d of age) and the function did not decline with age. Irradiated mice reconstituted with syngeneic marrow or spleen cells developed functional NK cells against EL-4 targets before they developed anti-YAC-1 NK cells in their spleen. Thus anti-EL-4 NK cells that express hybrid resistance in vitro appear to differ from anti-YAC-1 NK cells and do not require an intact marrow microenvironment for functional differentiation. Despite differences in the NK-cell types involved in the lysis of YAC-1 and EL-4 cells, these two tumor cells share certain common determinants. This was ascertained both by cold competition and by utilization of YAC-1 and EL-4 cell monolayers as immunoadsorbents. We conclude that Hh-1b is the common antigen present in EL-4 and YAC-1 cells, because B6D2F1 anti-B6 (anti-Hh-1b) cytotoxic T lymphocytes lysed both the tumor cells. Our data suggest that Hh-1b antigen is recognized by both types of NK cells, but that additional determinants must be present on YAC-1 cells. Two models of NK cell lysis compatible with the data are presented.
Read full abstract