The role of diffusion on the kinetics of reversible association to a macromolecule with two inequivalent sites is studied. Previously, we found that, in the simplest possible description, it is not sufficient to just renormalize the rate constants of chemical kinetics, but one must introduce direct transitions between the bound states in the kinetic scheme. The physical reason for this is that a molecule that just dissociated from one site can directly rebind to the other rather than diffuse away into the bulk. Such a simple description is not valid in two dimensions because reactants can never diffuse away into the bulk. In this work, we consider a variety of more sophisticated implementations of our recent general theory that are valid in both two and three dimensions. We compare the predicted time dependence of the concentrations for a wide range of parameters and establish the range of validity of various levels of the general theory.