Understanding the drivers of ecosystem stability has been a key focus of modern ecology as the impacts of the Anthropocene become more prevalent and extreme. Marine protected areas (MPAs) are tools used globally to promote biodiversity and mediate anthropogenic impacts. However, assessing the stability of natural ecosystems and responses to management actions is inherently challenging due to the complex dynamics of communities with many interdependent taxa. Using a 12-year time series of subtidal community structure in an MPA network in the Channel Islands (United States), we estimated species interaction strength (competition and predation), prey species synchrony, and temporal stability in trophic networks, as well as temporal variation in sea surface temperature to explore the causal drivers of temporal stability at community and metacommunity scales. At the community scale, only trophic networks in MPAs at Santa Rosa Island showed greater temporal stability than reference sites, likely driven by reduced prey synchrony. Across islands, competition was sometimes greater and predation always greater in MPAs compared with reference sites. Increases in interaction strength resulted in lower temporal stability of trophic networks. Although MPAs reduced prey synchrony at the metacommunity scale, reductions were insufficient to stabilize trophic networks. In contrast, temporal variation in sea surface temperature had strong positive direct effects on stability at the regional scale and indirect effects at the local scale through reductions in species interaction strength. Although MPAs can be effective management strategies for protecting certain species or locations, our findings for this MPA network suggest that temperature variation has a stronger influence on metacommunity temporal stability by mediating species interactions and promoting a mosaic of spatiotemporal variation in community structure of trophic networks. By capturing the full spectrum of environmental variation in network planning, MPAs will have the greatest capacity to promote ecosystem stability in response to climate change.
Read full abstract