We studied effects of new materials such as, in particular, earlier obtained biogenic selenium and tellurium nanoparticles on the properties that determine pathogenic potential of type bacterial cultures and aggressiveness of marine-derived strains. We compared the effect of nanoparticles on bacteria to that of known toxicants in several experiments aimed to determine the growth characteristics and activity of enzymes on nutrient media, and also the adhesion to human red blood cells. The following concentrations of toxicants were used: sodium selenite and potassium tellurite, 100 μg/mL; copper sulfate, 10 μg/mL; selenium and tellurium nanoparticles, 100 μg/mL. We found that nanoparticles mainly inhibited the proteolytic, lipolytic, amylase, DNase, and hemolytic activities, whereas copper ions stimulated them. Selenium nanoparticles inhibited the pigment synthesis in Pseudomonas aeruginosa and Staphylococcus aureus. Nanoparticles and soluble forms of selenium and tellurium suppressed the bacterial adhesion to human red blood cells, while copper ions stimulated it. We also carried out an assessment of possible environmental risks of emergence/use of the toxicants under study in the marine environment using an Artemia salina model. Based on the analysis of selenium and tellurium nanoparticles, we could classify them as nontoxic compounds and sodium selenite, potassium tellurite, and copper sulfate as toxic ones.