Guayule is a new crop being commercialized for hypoallergenic latex production. Because natural processes that occur in the plant following harvest, notably dehydration, result in rapid loss of latex and immediate processing of guayule shrub for latex on a commercial scale is not feasible, storage conditions that maintain latex concentration and yield need to be established. The objective of this study was to determine the effects of different storage conditions on the extractable latex, total rubber, resin, and guayulin A and B contents, and extractable latex, total rubber, and resin yields in harvested guayule shrub. The experiment was established using plants transplanted into the field at the University of Arizona Maricopa Agricultural Center, Maricopa, AZ, USA, on 22 March 2001. A randomized complete block design with four replications was used. Two germplasm lines (11591 and AZ-2) were used for this experiment. Twenty plants of each line were harvested six times (November 2002, March 2003, July 2003, November 2003, March 2004, and July 2004) from each field plot. Two plants of each line were randomly assigned to each of 10 storage treatment combinations reflecting wet, dry, or wet alternated with dry conditions prior to chipping for latex extraction. Extractable latex content, total rubber content, resin content, and guayulin A and B contents were determined after storage and compared with freshly harvested shrub. Plant biomass, latex yield, rubber yield, and resin yield were also determined and compared with fresh harvested shrub. AZ-2 was significantly lower in latex, rubber, and guayulin A content than 11591, and significantly higher in biomass, latex yield, rubber yield, resin content, resin yield, and guayulin B content. The results from this study show that moist storage of harvested shrub prior to dry chipping allows a higher yield of latex. Storing the shrub under moist conditions may allow more flexible harvesting and processing schedules, by limiting post-harvest latex losses and increasing the time interval between harvesting and processing.
Read full abstract