Trypanosoma cruzi, the causative agent of Chagas disease, is primarily transmitted to humans by hematophagous bugs of the Triatominae subfamily. In the Colombian Caribbean region, particularly on Margarita Island, T. cruzi transmission is highly endemic and associated with vectors such as Triatoma maculata and Rhodnius pallescens. Additionally, T. cruzi-infected Didelphis marsupialis are commonly found in close proximity to human dwellings. Given the complex transmission dynamics involving various domestic and non-domestic hosts, this study aimed to analyze 145 T. cruzi clones from twelve strains isolated from T. maculata, R. pallescens, and D. marsupialis using spliced leader intergenic region (SL-IR) sequences and nine polymorphic microsatellite loci. The results indicate the presence of a single polymorphic T. cruzi population, suggesting sustained local transmission dynamics between triatomines adapted to A. butyracea forests and peridomestic areas inhabited by synanthropic mammal reservoir such as D. marsupialis. Notably, this population appears to lack substructure, highlighting the importance of adopting an alternative eco-health approach to complement traditional chemical vector control methods for more effective and sustainable interruption of transmission.
Read full abstract