The timely and accurate mapping of sugarcane cultivation is significant to ensure the sustainability of the sugarcane industry, including sugarcane production, rural society, sugar futures, and crop insurance. Synthetic aperture radar (SAR), due to its all-weather and all-time imaging capability, plays an important role in mapping sugarcane cultivation in cloudy areas. However, the inherent speckle noise of SAR data worsens the “salt and pepper” effect in the sugarcane map. Therefore, in previous studies, an additional land cover map or optical image was still required. This study proposes a new application paradigm of time series SAR data for sugarcane mapping to tackle this limitation. First, the locally estimated scatterplot smoothing (LOESS) smoothing technique was exploited to reconstruct time series SAR data and reduce SAR noise in the time domain. Second, temporal importance was evaluated using RF MDA ranking, and basic parcel units were obtained only based on multi-temporal SAR images with high importance values. Lastly, the parcel-based classification method, combining time series smoothing SAR data, RF classifier, and basic parcel units, was used to generate a sugarcane extent map without unreasonable sugarcane spots. The proposed paradigm was applied to map sugarcane cultivation in Suixi County, China. Results showed that the proposed paradigm was able to produce an accurate sugarcane cultivation map with an overall accuracy of 96.09% and a Kappa coefficient of 0.91. Compared with the pixel-based classification result with original time series SAR data, the new paradigm performed much better in reducing the “salt and pepper” spots and improving the completeness of the sugarcane plots. In particular, the unreasonable non-vegetation spots in the sugarcane map were eliminated. The results demonstrated the efficacy of the new paradigm for mapping sugarcane cultivation. Unlike traditional methods that rely on optical remote sensing data, the new paradigm offers a high level of practicality for mapping sugarcane in large regions. This is particularly beneficial in cloudy areas where optical remote sensing data is frequently unavailable.