Accurate positioning of endocardial catheters inside cardiovascular structures is crucial in electrophysiology (EP) procedures. Improvements in cardiac mapping are required for a better understanding and treatment of arrhythmias. The proposed Electroloc system is a simple, fast and accurate method for endocardial catheters localization. The key features of Electroloc are the use of conventional EP catheters and the simple data processing for providing localization. Electroloc is able to locate any conventional EP mapping catheter with respect to a noncontact EP catheter used as reference, by sequentially passing a sub-threshold current between the mapping electrode (ME) of the mapping catheter and each electrode of the reference catheter. This creates different potential gradients across the reference catheter used to compute two spatial coordinates (horizontal and vertical coordinates) intended for positioning the ME in the cardiac chamber. In vitro experiments demonstrated that Electroloc is a reliable and sensitive system for localizing the ME with a spatial resolution of 2 mm in the vertical localization and of 5 mm in the horizontal localization. Further studies will be required to improve Electroloc accuracy and to extend its sensitivity range.