In order to solve the current network rigidity and optimize the resource requirements of multiple virtual networks for synchronous mapping, improve the success rate of virtual network mapping requests, the long-term revenue and overhead ratio of the substrate network, node resource utilization rate and link resource utilization rate. A global optimal mapping method based on discrete optimization firefly algorithm is presented. Analyze the problem of virtual network mapping, map virtual nodes to physical nodes, and map virtual links to physical paths. According to the resource constraints of the virtual network and the substrate network, a multi-objective optimization model of the virtual network mapping is constructed, and the discrete fireflies optimization algorithm is used to obtain the global optimal solution of the virtual network mapping model to achieve the optimal allocation of global resources. The experimental results show that the discrete optimization firefly algorithm has a good performance in solving the virtual network mapping problem, and can effectively improve the virtual network request acceptance rate, node resource utilization rate, link resource utilization rate, and long-term revenue and cost ratio of the substrate network, ensuring Optimization of virtual network resources.
Read full abstract