The primary objective of this study is to emphasize the importance of maintaining optimal oral health through regular toothbrushing practices. To achieve this objective, a custom-designed electromechanical toothbrush simulator device was developed. This innovative tool enables researchers to investigate the impact of abrasive-based whitening toothpastes on enamel surface roughness compared to brushing without toothpaste. The device design is composed of multiple systems, including mechanical, motorization, and toothpaste irrigation components. The device incorporates various components, including mechanical, motorization, and toothpaste irrigation systems. Specifically, the mechanical aspect comprises fabricated metal parts, 3D printed elements, and a load cell for measuring brushing force. The motorization section integrates a microcontroller and a stepper motor, allowing for the adjustment of brushing cycles and speed. Furthermore, the toothpaste irrigation system employs a pump with adjustable speed, along with a toothpaste canister and a waste receptacle. By providing a controlled environment for evaluating the effects of different toothpaste formulations on enamel integrity, this simulator device contributes significantly to advancements in oral care research and product development.