To evaluate change in retinal layers 18 months after femtosecond laser-assisted cataract surgery (LCS) and manual cataract surgery (MCS) in a representative age-related cataract population using artificial intelligence (AI)-based automated retinal layer segmentation. This was a prospective, randomized and intraindividual-controlled study including 60 patients at the Medical University of Vienna, Austria. Bilateral same-day LCS and MCS were performed in a randomized sequence. To provide insight into the development of cystoid macular oedema (CME), retinal layer thickness was measured pre-operatively and up to 18 months post-operatively in the central 1 mm, 3 mm and 6 mm. Fifty-six patients completed all follow-up visits. LCS compared to MCS did not impact any of the investigated retinal layers at any follow-up visit (p > 0.05). For the central 1 mm, a significant increase in total retinal thickness (TRT) was seen after 1 week followed by an elevated plateau thereafter. For the 3 mm and 6 mm, TRT increased only after 3 weeks and 6 weeks and decreased again until 18 months. TRT remained significantly increased compared to pre-operative thickness (p < 0.001). Visual acuity remained unaffected by the macular thickening and no case of CME was observed. Inner nuclear layer (INL) and outer nuclear layer (ONL) were the main causative layers for the total TRT increase. Photoreceptors (PR) declined 1 week after surgery but regained pre-operative values 18 months after surgery. Low-energy femtosecond laser pre-treatment did not influence thickness of the retinal layers in any topographic zone compared to manual high fluidic phacoemulsification. TRT did not return to pre-operative values 18 months after surgery. The causative layers for subclinical development of CME were successfully identified.
Read full abstract