Clostridium tyrobutyricum has great potential for bio-based chemicals and biofuel production from mannitol; however, the mannitol metabolic pathway and its metabolic regulatory mechanism have not been elucidated. To this end, the RNA-seq analysis on the mid-log growth phase of C. tyrobutyricum grown on mannitol or xylose was performed. Comparative transcriptome analysis and co-transcription experiment indicated that mtlARFD, which encodes the mannitol-specific IIA component, transcription activator, mannitol-specific IIBC components, and mannitol-1-phosphate 5-dehydrogenase, respectively, formed a polycistronic operon and could be responsible for mannitol uptake and metabolism. In addition, comparative genomic analysis of the mtlARFD organization and the MtlR protein structural domain among various Firmicutes strains identified the putative cre (catabolite-responsive element) sites and conserved phosphorylation sites, but whether the expression of mannitol operon was affected by CcpA- and MtlR-mediated metabolic regulation during mixed substrate fermentation needs to be further verified experimentally. Based on the gene knockout and complementation results, the predicted mannitol operon mtlARFD was confirmed to be responsible for mannitol utilization in C. tyrobutyricum. The results of this study could be used to enhance the mannitol metabolic pathway and explore the potential metabolic regulation mechanism of mannitol during mixed substrate fermentation.
Read full abstract